
Understanding the Finite State Risk Profiles
Until now, IoT devices have been like black boxes, meaning that users have no control or visibility into what is
running inside them. Finite State’s firmware analysis, which illuminates the software and components buried
deep inside IoT devices, helps security teams to properly assess the associated risk to their network.

TRANSPARENCY INTO DEVICE RISK

Finite State’s risk model is the industry’s most comprehensive. Our platform fuses passive network monitoring,
firmware analysis, vulnerability data sources, exploit data sources, manufacturer disclosure statements, your
own inventory management systems, threat feeds, and more to feed our data models. Further, we continuously
update these risk scores and provide historical views, enabling you to understand your current, at the moment
posture and how this has changed over time.

Finite State’s risk model considers the most dimensions and factors, giving deep insight into the real risk of your
deployed device. We can consider the risk based on placement within the network, configuration of the services
on the device, the code contained within the firmware, and the type of product to understand all the possible
dimensions of risk. We store all of this data and can visualize risk over time as well for each device, allowing you
to better understand how your security posture is improving as you respond to our insights.

We use reverse engineering to unpack the firmware image in a device to understand key components, including
overall firmware subcomponents and whether the original equipment manufacturer (OEM) follows a secure
software development lifecycle.

UNDERSTANDING FIRMWARE CONTENTS

Security teams usually have no idea what is running inside their IoT devices, making it nearly impossible to
properly assess risk. To make matters worse, global supply chains and lack of transparency into IoT and other
connected devices leaves nearly every organization exposed to potential vulnerabilities buried inside.

Finite State has built the world’s largest
firmware reverse engineering system,
which has analyzed hundreds of
thousands of firmware images (resulting
in hundreds of millions of unique files).
This approach makes it possible to
understand the true risk of devices on
any network based on the software
that is installed, its configuration, and
how the operating system as a whole
is configured. To understand the risk
any device may pose to the network,
we look at key pieces of content in the
firmware image, including the software
bill of materials and hard-coded
credentials and other crypto material
that may be present.

UNDERSTANDING FIRMWARE CONTENTS

Software Bill
of Materials

Risk
Overview

Hard-coded
Credentials

Cryptographic
Materials

1

2

3

SOFTWARE BILL OF MATERIALS

Finite State unpacks the software bill of materials,
providing visibility into what’s running on an IoT device,
including binaries like Bash, BusyBox, Curl, dropbear,
and even OpenSSL. Not only does this help inform
the risk profile, but understanding the software bill of
materials allows us to more positively identify products
and software running on the network based on
firmware-version unique characteristics.

HARD-CODED CREDENTIALS

Automated analysis capabilities locate, extract,
and attempt to recover plaintext credentials for all
accounts on the system. Having a full accounting of the
credentials in a firmware often leads to the discovery
of potential backdoors that increase the risk to the
network.

CRYPTOGRAPHIC MATERIALS

Similar to hard-coded credentials, cryptographic
material contained in a firmware image is highly
problematic. The presence of materials such as private
keys and authorized key files can produce backdoors
allowing unintended access to the device. The presence
of poorly configured cryptographic settings like the
presence of standardized host key files may weaken the
security envelope of devices, as these should be unique
per device, not common across firmware.

Worse yet, because of the supply chain for these
devices, numerous devices are marketed and sold from
completely different companies and contain these same
cryptographic materials inside.

Note that seeing this in the firmware does not
necessarily mean there was malicious intent. In most
cases crypto materials are included as part of the
debugging process. Unfortunately, these materials can
be forgotten.

1

2

3

GAUGING QUALITY AND SAFETY

Safety
Features

Presence
of Known

Vulnerabilities

Risk
Overview

Code
Complexity

5

4

6

Firmware analysis is also critical to understanding a product manufacturer’s secure software development
lifecycle. Finite State analyzes key factors that indicate the relative security of any software development lifecycle
by observing typical indications of secure development, including how the presence of known vulnerabilities,
whether third-party software is used, the use of binary safety features, code complexity, the number of safe and
unsafe function calls, and memory corruptions.

PRESENCE OF KNOWN VULNERABILITIES

Based on the Software Bill of Materials that includes all
known third-party binaries, the operating system, and
awareness of the product itself, Finite State identifies all
known vulnerabilities in this software automatically. Data
from these vulnerability data sources is automatically
deduplicated and presented to users. Finite State also
correlates information from the vulnerability database
about the risk of the vulnerability with known exploit data,
allowing users to understand how these vulnerabilities are
being used by real-world malicious actors.

This equips you with the same level of visibility used by
an attacker who is aware of all software on the device
and capable of using these known vulnerabilities to
link together an attack chain. One vulnerability can
be used for access to the device, one can be used for
privilege escalation, and so forth until the device is fully
compromised.

This level of visibility into known vulnerabilities baked into
a device is only possible through firmware analysis. If you
look up this specific device within the National Vulnerability
Database, you’ll notice that is has no CVEs associated with
it. But if you look INSIDE the device using the Finite State
Platform, you can see that there are more than a thousand
CVEs associated with the packages that are present.

SAFETY FEATURES

Another component that we look at in our analysis are the
binary safety features. A binary is generally compiled from
source code into machine executable code. Most modern
compilers will come with safety features to prevent
address lookups, buffer overflows, and things of that
nature. These features in modern compilers are turned on
by default—so when we see that these are not enabled on
binaries, we can assume that someone has actively turned
these features off. That may have been done maliciously,
or it may have been done to make the existing code work.
We cannot determine intent; however, we can see if these
compiler level protections are turned on consistently to
protect against malicious attacks.

CODE COMPLEXITY

Code complexity can help analysts understand the risk
profile and stability estimations of any unit of code.
This particular metric effectively looks at the number of
different decisions that can be made in a unit of code.
When this score is higher, there are more logical paths
to follow, which means there is a higher level of difficulty
to adequately test the software. Software that is more
difficult to test has been shown in many studies to have
a higher risk of defects, which correlates with security
vulnerabilities. Simply put, simpler code is more secure.

4

5

6

GAUGING QUALITY AND SAFETY

Unsafe
Function Calls

Risk
Overview

Memory
Corruption

7

8

UNSAFE FUNCTION CALLS

In programming languages like C, there are a series of
legacy functions like strcpy that are considered unsafe
and have modern analogs like strncpy. These legacy
functions have long been known to be insecure for
many years. The secure functions, in many cases, have
been available for more than a decade. Finite State
identifies the first- and third-party binaries being used
and whether they use these functions. If manufacturers
include numerous unsafe function calls in their own
code, that suggests they are struggling to build secure
software. The presence of unsafe function calls in
third-party code is also likely a string indicator of how
thoroughly they vet and maintain third-party tools.
Together, this metric provides a better understanding
of the priority level given to security throughout the
software development lifecycle.

MEMORY CORRUPTION

A memory corruption is a type of vulnerability that
may occur when memory is altered without an explicit
assignment, meaning that the items stored at that
memory location can be modified. Finite State has
developed analysis tools to automatically find previously
unknown 0-day memory corruption vulnerabilities,
allowing us to understand how well the software
development team implemented memory management
practices, as well as what unknown memory corruption
vulnerabilities live within the software.

7

8

TRANSPARENCY IMPROVES SECURITY
With years of offensive cyber operations experience, our team understands that attackers know more about
your devices than you do. They gain this knowledge by looking inside the firmware, and they find trivially
exploitable vulnerabilities. The Finite State Platform has been designed from the ground up to enable you to look
deep inside the devices on your network, gain an in-depth understanding of the risks buried inside the firmware,
and establish a new era of transparency. Transparency undeniably improves security, and by leveraging our
unique capabilities in firmware reverse engineering, comprehensive risk modeling, and advanced detection
models, you can stay ahead of attackers for the first time.

